Electromagnetic spring-applied tooth brake
Type 558
Electromagnetic spring-applied tooth brake - Type 558

Characteristics and features

• high torque transfer despite compact dimensions
• form-locking transmission of torque without slip
• engageable also at low relative speed
• operating at high range of temperatures
• easy control via direct current
• anti-magnetic toothing for optimized magnetic flux
• spring-applied (normally on)
• application-related customized tooth geometries
• short cycle times
• oil running or dry running
• synchronized switching with fixed engagement positions
• offers uncompromised safety and reliability
• integrated, easy-to-assemble system solution
• condition monitoring on demand

Mönninghoff power transmission represents an infinite variant diversity that is applied by all areas of modern mechanical engineering.

Our technologies are mostly designed to operate under extreme conditions. We offer high precision products for medical robotics, fail-proof security for aerospace technology or synchronization solutions for the packaging or printing industry.

We thus address customers who have the highest standards for their own machines or systems. To them, we can offer highly complex, application-specific solutions.
Electromagnetic spring-applied tooth brake - Type 558

Match code

Mönninghoff spring-applied tooth brakes are indicated by the following match code:

558. A . B . 1

- **A** brake size
- **B** design of stator

Other individual characteristics:
- toothing geometry
- voltage
- bore size with keyway

According to these characteristics, we design individual solutions concerning transmitted torque, engaging behavior or rotation speed.

Our engineers can assist with finding an application-specific brake at any time. Together, we can develop individual and innovative solutions for extreme operating conditions.

Ordering example

Mönninghoff spring-applied tooth brake
Type 558.14.1.1

toothing standard
voltage 24 Vdc
bore size d 20 mm H7, keyway acc. to DIN 6885/1
Brake size

When dimensioning a Mönninghoff tooth brake, several technical preconditions should be considered:

- for the selection of the correct size, not only the peak load but also the dynamic behavior of the drive have to be taken into account
- tooth brakes - contrary to friction brakes - must never be overloaded and safety factors must be considered
- generally, the selection of the correct brake is based on torque:
 \[M = M_L + K \ [Nm] \]

- the transmittable torque of the brake must always be higher than the largest possible occurring torque:
 \[\text{Requirement } M_U > M \]

\[P = \text{power of motor } [\text{kW}] \]
\[n = \text{rotating speed } [\text{min}^{-1}] \]
\[K = \text{safety factor } 1.5 \ldots 2.5 \]
\[M = \text{required torque} \]
\[M_L = \text{load torque} \]
\[M_U = \text{nominal torque of brake} \] (see enclosed chart)
Electromagnetic spring-applied tooth brake - Type 558

Design of stator

![Design of stator diagram]

- **Type 1:** with flying leads
- **Type 2:** with plug and socket

Technical data

<table>
<thead>
<tr>
<th>Size</th>
<th>08</th>
<th>14</th>
<th>17</th>
<th>22</th>
<th>23</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>torque M_0 [Nm]</td>
<td>10</td>
<td>40</td>
<td>90</td>
<td>180</td>
<td>350</td>
<td>1000</td>
</tr>
<tr>
<td>max. speed n [min⁻¹]</td>
<td>4500</td>
<td>3900</td>
<td>3000</td>
<td>2500</td>
<td>2100</td>
<td>1800</td>
</tr>
<tr>
<td>input power P_{in} [W]</td>
<td>18,6</td>
<td>38,8</td>
<td>58</td>
<td>81,5</td>
<td>100,6</td>
<td>162,1</td>
</tr>
<tr>
<td>spring pressure [N]</td>
<td>90</td>
<td>200</td>
<td>450</td>
<td>650</td>
<td>850</td>
<td>2300</td>
</tr>
<tr>
<td>number of teeth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard</td>
<td>260</td>
<td>388</td>
<td>392</td>
<td>358</td>
<td>195</td>
<td>301</td>
</tr>
<tr>
<td>saw</td>
<td>20</td>
<td>36</td>
<td>38</td>
<td>40</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>number of teeth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bore keyway acc. to DIN 6885/1</td>
<td>min.</td>
<td>d H7 [mm]</td>
<td>max.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>47</td>
</tr>
<tr>
<td>saw</td>
<td>15</td>
<td>35</td>
<td>40</td>
<td>48</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D [mm]</td>
<td>67</td>
<td>95</td>
<td>114</td>
<td>134</td>
<td>166</td>
<td>195</td>
</tr>
<tr>
<td>D_1</td>
<td>60</td>
<td>85,5</td>
<td>100</td>
<td>120</td>
<td>150</td>
<td>180</td>
</tr>
<tr>
<td>d_1</td>
<td>32</td>
<td>52</td>
<td>62</td>
<td>70</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>d_2</td>
<td>24</td>
<td>45</td>
<td>55</td>
<td>60</td>
<td>79.7</td>
<td>95</td>
</tr>
<tr>
<td>d_3</td>
<td>31</td>
<td>50</td>
<td>60</td>
<td>85</td>
<td>95</td>
<td>110</td>
</tr>
<tr>
<td>d_4</td>
<td>M4</td>
<td>M6</td>
<td>M6</td>
<td>M6</td>
<td>M6</td>
<td>M6</td>
</tr>
<tr>
<td>d_5</td>
<td>M8</td>
<td>M8</td>
<td>M12</td>
<td>M12</td>
<td>M12</td>
<td>M12</td>
</tr>
<tr>
<td>d_6</td>
<td>46</td>
<td>70</td>
<td>90</td>
<td>95</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>d_7</td>
<td>38</td>
<td>51</td>
<td>59.4</td>
<td>65.25</td>
<td>78</td>
<td>94</td>
</tr>
<tr>
<td>l_1</td>
<td>34</td>
<td>46</td>
<td>54</td>
<td>57</td>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>l_2</td>
<td>-</td>
<td>6</td>
<td>9</td>
<td>8,5</td>
<td>10,5</td>
<td></td>
</tr>
<tr>
<td>l_3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>l_4</td>
<td>5</td>
<td>6,5</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>l_5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>l_6</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,3</td>
<td>0,3</td>
<td>0,4</td>
</tr>
<tr>
<td>n x φ</td>
<td>4 x 90</td>
<td>4 x 90</td>
<td>6 x 60</td>
<td>6 x 60</td>
<td>6 x 60</td>
<td>6 x 60</td>
</tr>
</tbody>
</table>

Notes:
- AMP-pluck and socket connection
- Electromagnetic spring-applied tooth brake - Type 558
- Bore for locking pin customer-made
- Type 1: with flying leads
- Type 2: with plug and socket
Toothing geometries

Mönninghoff brakes offer a large variety of application-specific designs of toothing. The amount of possible geometries or fixed points is endless and our engineers can help to design an optimized version at any time.

Toothing examples

Standard
- transmits torque in both directions with little backlash
- also available backlash free
- with increased flank angle also available as torque limiter with fixed position engagement

Saw (counter-) clockwise
- transmits nominal torque in both directions
- in reverse direction approx. 10% of torque can be transmitted
- can be engaged at higher speeds

Spaced
- transmits torque in both directions with large amount of backlash
- can be engaged at higher speeds

Stepped (counter-) clockwise
- transmits nominal torque in both directions
- in reverse direction approx. 20% of torque can be transmitted with little backlash
- can be engaged at higher speeds
Electromagnetic spring-applied tooth brake - Type 558

Voltage

- standard voltage is 24 Vdc
- special voltages between 6 and 196 Vdc on request
- spring-applied (normally on)
- the permissible voltage tolerance is -10% to +5% according to VDE 0580
- in order to avoid induced voltage peaks, it is recommended to use varistors at high switching frequencies
- to ensure fast and safe release, it is recommended to pulse the coil with a high d.c. voltage

At a glance

- special bronze alloy
- form-locking transmission of torque
- spring-applied (normally on)
- wide variety of bore sizes
- optimized magnetic flux
- short cycle times
- backlash-free
Mönninghoff brakes can be combined with a variety of many other power transmission elements. Such complex high-tech systems can solve any application-specific tasks and can fulfill any customer-specific wishes.

In many cases, a combination of different drive elements is needed to solve the applications particular problems and difficulties. Being not just supplier but technological partner to our customers, our extensive engineering is part of extraordinary and challenging power transmission projects.

Our product is the know-how, with hardware as an added bonus.
Driven by excellence

Why Mönninghoff

- intensive dialog with our customers engineers
- decades of experience and competence
- deep understanding for all areas of mechanical engineering
- highly modern and flexible machine park
- enthusiasm for quality
- flexibility, inventiveness and communication skills of our employees
- commitment to Germany and Bochum as industrial location

How to reach us

Sales
sales@moenninghoff.de
+49 234 3335-250

Helps you find a customer-specific power transmission solution for extraordinary circumstances.

Order Management
confirmation@moenninghoff.de
+49 234 3335-353

For the competent processing and smooth handling of your orders and delivery dates.

Service
service@moenninghoff.de
+49 234 3335-333

Feels committed to protect and preserve the high value of your machine and to secure its availability.

www.moenninghoff.de/en